Art. XVII. - On "Confocal Quudrics of Moments of
Inertia" pertaining to all Planes in Space, and
Loci and E'nvelopes of Straight Lines whose
"Moments of Incria" are Constant.

By Martin Gardiner, C.E.

$$
\text { Read May } 12,1892 .]
$$

Abstract.

The author commences by solving the following problem, by the Cartesian co-ordinate method :-

Problem.-Given any number of points $P_{1}, P_{2}, P_{3}, \ldots$. in space, and corresponding numbers $a_{1}, a_{2}, a_{3}, \ldots$, known in signs and magnitudes as respective multipliers; to find the Envelope of a plane $L L L$, such that, in every position it call assume, we shall have

$$
a_{1} \cdot p_{1}^{2}+a_{2} \cdot p_{2}^{2}+u_{3} \cdot p_{3}^{2}+\ldots=S
$$

in which $p_{1}^{2}, p_{2}^{2}, p_{3}^{2}, \ldots$. , represent the squares of the pedals firon the points $P_{1}, P_{2}, l_{3}^{\prime}, \ldots$, to the plane $L L L$, and S a constant entity known in sign and magnitude.

He finds the equation of the envelope of the plane $L L L$ to be that of a Quarric whose centre is coincident with the mean-centre of the given points for the multipliers $a_{1}, a_{2}, a_{3}, \ldots$ And from the form of the equation arrived at (which is given abridged and expanded), he infers that for all possible values of the entity \mathbb{S}, the corresponding Quadrics are Confocal Quadrics.

He then shows by a purely geometrical method (independent of co-ordinates) that for any constant value of S, the
envelope of the plane $L L L$ is a Quadric whose centre is coincident with the mean centre of the points P_{1}, P_{2}, P_{3}, \ldots, and their respective multipliers $a_{1}, a_{2}, a_{3}, \ldots$. And he shows that the quadrics corresponding to all possible values of the entity S , are Confocal Quadrics.

In order to amplify his Geometrical Method, he proceeds to give a full and complete solution to the particular cases in which the given points $P_{1}, P_{2}, P_{3}, \ldots$, are all in one straight line. And he shows that it depends on the state of the data, as to whether the Confocal Quadrics be Ellipsoids ; Hyperboloids of One Sheet; Hyperboloids of Two Sheets; Spheres; or Paraboloids.

He then directs attention to the Physical Aspect of the problem, which he enunciates as follows :-

Problem.-Given any masses $M_{1}, M_{2}, M_{3}, \ldots$, in space, and corresponding units $a_{1}, \iota_{2}, u_{3}, \ldots$, known in signs as their respective multipliers; to find the Envelope of a plane $L L L$, such that in every position it can assume, we shall have the sum of the Moments of Inertia of the masses represented by

$$
\begin{aligned}
a_{1} \cdot \geq m_{1}\left(P_{1} L\right)^{2} & +a_{2} \cdot \searrow m_{2}\left(P_{2} L\right)^{2}+a_{3} \cdot \geq m_{3} \cdot\left(P_{3} L\right)^{2} \\
& +\ldots=\text { constant } S,
\end{aligned}
$$

in which $m_{1}, m_{2}, m_{3}, \ldots$ represent molecules of the masses $M_{1}, M_{2}, M_{3}, \ldots$, at any points $Y_{1}, P_{2}, P_{3}, \ldots$ in those masses, and in which $P_{1} L, P_{2} L, P_{3} L, \ldots$ represent the pedals from the points $P_{1}, P_{2}, P_{3}, \ldots$, to the plane $L L L$.

In elucidation of this aspect of the problem, he reconsiders the particular cases, in which he now replaces the given points or molecules at $P_{1}, P_{2}, P_{3}, \ldots$ all in one line, by Spheres whose centres are all in one straight line. He shows that the results arrived at previously, apply when masses replace mere molecules; and that, according to analogous states of the data, the Confocal Quadrics will be Ellipsoids, Hyperboloids, Spheres, or Paraboloids.

He establishes the limiting values for the constant S, and exposes the limiting forms of the Quadrics in minute and full detail. And he corroborates a remarkable theorem of

Duhamel's, as to the existence of two points, for each of which Poinsot's "Ellipsoid of stress" is a Sphere. He shows, moreover, these two points to belong to a "Focal Conic" of the family of Confocal Quadrics.

In the case in which the bodies are Spheres situated in any manner in space, he gives a simple and effective method of finding the three principal axes of inertia.

He then records the following eight 'Theorems, as results of his investigations:-

Theorem 1.

Given any masses $M_{1}, M_{2}, M_{3}, \ldots$. in space, and corresponding numbers $a_{1}, a_{2}, a_{3}, \ldots$ of known signs as multipliers. If a plane $L L L$ (otherwise unrestricted) be such that in every position it can assume, the sum of the moments of inertia of the entities $a_{1}, M_{1}, a_{2} . M_{2}, u_{3} . M_{3}$, with respect to it, be of any constant magnitude S, then will the envelope of the plane be a determinable quadric Q, whose centre is coincident with the mean centre of the entities. And the whole system of quadrics Q_{1}, Q_{2}, Q_{3}, corresponding to all values $S_{1}, S_{2}, S_{3}, \ldots$. , of S, will be concentric, coaxial, and confocal quadrics. And in all cases in which the multipliers a_{1}, a_{2}, \ldots are all positive, the quadrics will be Ellipsoids and Hyperboloids of One Sheet.

Theorem 2.

Given any masses $M_{1}, M_{2}, M_{3}, \ldots$. in space, and corresponding numbers $a_{1}, a_{2}, u_{3}, \ldots$ of known signs, as multipliers. The envelope of all planes $L L L$ passing through any given point V in space, and such that the sum of the moments of inertia of the entities $u_{1}, M_{1}, \iota_{2} . M_{2}, u_{3} . M_{3}$, with respect to them severally, is of any constant magnitude S, will be a determinable quadric cone C, which envelopes a determinalle quadric Q whose centre is coincident with the mean centre () of the entities. And the whole family of such cones $C_{1}, C_{2}, C_{3}, \ldots$, corresponding to all values $S_{1}, S_{2}, S_{3}, \ldots$, of S, will be coaxial and confocal cones enveloping coaxial and confocal quadrics, whose common centre is the mean centre O of the entities
${ }_{1} . M_{1}, a_{2}, M_{2}, \ldots \ldots$ And if the point V be at infinity, and given in direction by means of a vector $O R$ passing through the mean centre O; then, corresponding to various values of S, the envelopes of $L L L$ consist of a system of confocal cylinders enveloping the quadrics, åd having as common principal axis the directing vector $O R$.

Now $M_{1}, M_{2}, M M_{3}, \ldots$ being masses, and u_{1}, u_{2}, u_{3}, numbers known in signs: we know that if a plane $L L L$ be such that the sum of the moments of inertia of the entities $u_{1} . M_{1}, u_{2} . M_{2}, u_{3} . M_{3}, \ldots$, with respect to it is of a constant magnitude S, then will the envelope of the plane he a determinable quadric Q. But the line of intersection Il of any two mutnally orthogonal planes, both tangent to the quadric Q, is obviously such that the sum of the moments of inertia of the entities with respect to it is represented by 2.s.

We can easily form the equations of tangent planes to the quadric Q, and express their mutual orthogonism; but we need not try to evolve an equation of a surface which could be the envelope of all the lines $l l$ of intersection of the pairs of mutually orthogonal tangent planes to Q. This is obvious:-for if we suppose p to be any point whatever on any surface, and construct a Poinsot Ellipsoid having such point as centre, we perceive that the lines $l l$ through the point form a cone, and cannot generally all, be tangents at one point to any other surface. However, we proceed to find the Loci and Envelopes of lines $l_{1} l_{1}$ which fulfil the conditions as to equality of moments of inertia, and respecting which other conditions are imposed.
1°. -With respect to all the lines $l_{1} l_{1}$ which are parallel to any fixed straight line $R R$ passing through the mean centre O, which is also the centre of the quadric Q_{1}.

If through O we draw a plane normal to the line $R R$, and that we put $c_{1} c_{1} c_{1}$ to represent the conic which constitutes its trace on the quadric Q_{1} : then, from a well-known theorem, we perceise that the pairs of mutually orthogonal tangent planes whose points of contact lie in the conic $c_{1} c_{1} c_{1}$, give us all the lines $l_{1} l_{1}$ parallel to the fixed line $R R$, and that they constitute a Right Circular Cylinder having $R R$ as central axis.

2 .-With respect to all the lines $i_{1} l_{1}$ situated in tangent planes to the quadric Q_{1}.

We may first observe that if $P_{1} P_{1} P_{1}$ be any fixed plane tangent to the quadric Q_{1}, and that we project the quadric itself orthogonally by means of other tangent planes upon $P_{1} P_{1} P_{1}$, then will the projection be a conic $c_{1} c_{1} c_{1}$ situated in the plane $P_{1} P_{1} P_{1}$, which is obviously the envelope of all the lines $l_{1} l_{1}$ in the plane.
3°.-With respect to all the lines $l_{1} l_{1}$ situated in any plane $B B B$ whatever.

We first proceed and find the sum s_{q} of the moments of inertia of the entities $u_{1} . M_{1}, \mu_{2} . M_{2}, a_{3} . M_{3}, \ldots$, with respect to the plane $B B B$. We then find the quadric (? such that the sum of the moments of inertia of the entities with respect to any of its tangent planes is $=2 . s_{1},-s_{\mathrm{q}}$. Then, obvionsly, the orthogonal projection of the quadric Q_{\circ} so found (by means of tangent planes to it) upon the plane $B B B$ will be a conic, which is the envelope of the lines $l_{1} l_{1}$ situated in the plane.

The following is an obvious deduction :-

Theorem :3.

Given any masses $M_{1}, M_{2}, M_{3}, \ldots$ in space, and corresponding numbers $a_{1}, a_{2}, a_{3}, \ldots$ of known signs as multipliers; and given also the system of confocal quadrics $Q_{1}, Q_{2}, Q_{3}, \ldots$ such that the sum of the moments of inerti: of the entities $a_{1}, \Delta i_{1}, a_{2}, M_{2}, a_{3} . M_{3}, \ldots$, with respect to tangent planes to the quadrics are equals respectively to $s_{1}, s_{2}, s_{3}, \ldots$; then the orthogonal projections of the quadries on any given plane $B B B$ in space, constitute a family of confocal conics, which are the respective envelopes of straight lines $l_{1} l_{1}, l_{2} l_{2}, l_{3} l_{3}, \ldots$, situated in the plane, such that the sum of the moments of inertia of the entities $a_{1}, M_{1}, a_{2}, M_{2}, a_{3}, M_{3}, \ldots$, with respect to them, are determinable constants. And if the plane $E_{1} B_{1} B$ be parallel to either one of the two systems of paraitel circular sections of the confocal quadrics, then will
the projections of the qualrics on the plane be a system of concentric circles.

Note-The differences of the moments of inertia with respect to the lines $l_{1} l_{1}, l_{2} l_{2}, l_{3} l_{3}, \ldots$ (tangents to the respective conics) on the plane $B B B$ are obvionsly equals to the differences of the moments of inertia with respect to tangent planes to the quadrics Q_{1}, Q_{2}, Q_{3},

If we draw planes $P_{1} P_{1} P_{1}, P_{2} P_{2} P_{2}, \ldots$, through any diameter $D D$ of any one Q of the family of Confocal quadries. the lines $l l$ situated in these planes and such that the sum of the moments of inertia of the entities $a_{1}, M_{1}, a_{2}, M_{2}, u_{3} . M_{3}$,
with respect to them, severally, is of any constant magnitude $2 . s$, have (as alieady observed) as envelopes, in the planes, determinable conics. And we know that those of the lines $l l$ which are parallel to $D D$ form a circular cylinder', having the line $D D$ as axis. But it is easy to perceive that it is only when the axis $D D$ is normal to one of the circular sections of the quadric Q that the conics cut $D D$ in the one and same point, at which the lines $l l$ form a tangent plane to all the conics. Hence:-

Theorem 4.

Given any number of masses $M_{1}, M_{2}, M_{3}, \ldots$ in space, and corresponding numbers $a_{1}, a_{2}, a_{3}, \ldots$, of known signs as multipliers; if a straight line $l l$ move in space so as to be always in contact with the line $D D$ of a diameter of any quadric Q (of the confocal family) normal to either system of its circular sections, and so that in every position the sum of the moments of inertia of the entities $a_{1}, M_{1}, a_{2}, M_{2}, \ldots$, with respect to it, is of any constant magnitude $2 . s$; then will the envelope of the straight line $l l$ be a determinable quadric w of revolution, having the mean centre O as centre, and the fixed line $D D$ as axis. And all such quadrics $m_{1}, w_{2}, w_{3}, \ldots$, corresponding to all possible values $2 . s_{1}, 2 . s_{2}, 2 . s_{3}, \ldots$ of the constant are determinable quadrics of revolution, having the mean centre O as common centre, and the line $D D$ as principal axis.

Theorem 5.

The Locus of a straight line $l l$ through any fixed point D^{1} in a line $D D$ through the mean centre O and normal to
circular sections of the confocal quadries $Q_{1}, Q_{2}, Q_{3}, \ldots$, and snch that the smm of the moments of inertia of the entities $u_{1}, M_{1}, a_{2} . M_{2}, \ldots$, with respect to it, is of constant magnitude e.s, is a quadric cone of revolution. having the point D^{1} as vertex, and $D D$ as axis.

We know that the locus of the lines $l l$ of intersection of all pairs of mutually orthogonal tangent planes to any quadric, cone C is another qualric, cone E concyclic with the reciprocal of the cone C . (See Salmon's "Geometry of Three Dimensions," Art. 247). And if (C be a cone, such that the sum of the moments of inertia of the entities $a_{1}, M_{1}, a_{2} . M_{2}, \ldots$, with respect to its tangent planes, severaliy, be equal to a coustant s, we know that the sum of the moments of inertia of the entities with respect to the lines $l l$, severally, must be equal to 2́s. Hence we have :-

Theorem 6.

Given any masses $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \ldots$. , in space and corresponding numbers $u_{1}, u_{2}, u_{3}, \ldots$, of known signs, as multipliers ; the Locus of a straight line $l l$ passing through any given point V in space, and such that the sum of the moments of inertia of the entities ${ }_{1} . M_{1}, u_{2} . M_{2}, a_{3} . M_{3}, \ldots$ with respect to it $=$ any constant $2 . s$, is a quadric cone E, having the point V as vertex, and concyclic with the reciprocal of the cone C, having V as vertex, and such that the sum of the moments of inertia of the entitics with respect to its tangent planes $=s$, ice.

'Theorem 7.

If three planes, always mutually orthogonal, move in space so as to continue to be tangent planes respectively to any three of the coufocal quadrics Q_{1}, Q_{2}, Q_{3}; then will the Locus of their common point of intersection be a Sphere, whose centre is coincident with the mean centre O of the entities $a_{1} . M_{1}, a_{2}, M_{2}, \ldots$, which is also the centre of the quadrics.

Note-This Theorem, which is an obvious deduction from the kinetic properties exposed, was arrived at by Salmon by means of a formula due to Chasles. (See Salmon's " Geometry of 'Three Dimensions," Art. 172.)

Theorem 8.

If two planes A and B mutually orthogonal, be tangent planes respectively to any two quadrics Q_{1}, Q_{2}, of the confocal family; then will the other pair of tangent planes A^{1} and B^{1} through their line of intersection $l l$, to the same two quadrics, be mntually orthogonal.

This is an obvious deduction fiom the kinetic properties exposed.-The planes A and B being tangents to the quadrics Q_{1} and Q_{2}, the moments of inertia of the entities $a_{1} \cdot M_{1}, a_{2}$. M_{2}, \ldots, with respect t_{0}) them are constants s_{1} and s_{2}; and the sum $s_{1}+s_{2}$ of these moments of inertia is equal to the moment of inertia of the entities with respect to their line of intersection $l l$. And since the moment of inertia with respect to the line $l l$ is equal to the sum of the moments of inertia with respect to the tangent planes A^{1} and B^{2}, it follows that A^{1} and B^{1} must be mutually orthogonal.

This theorem is an extension to confocal quadrics of one pertaining to confocal conics, due to Admiral De Jonquières of the French Navy, who is one of the most distinguished geometers in Europe. (See "Mélanges de Géométrie Pure," par E. De Jonquières.)

Observations.

The family of confocal quadrics $Q_{1}, Q_{2}, Q_{3}, \ldots$, and the properties of inertia pertaining to them, are worthy of attention, not only on account of their intimate connection with " Wave Surfaces," and "Surfaces of Elasticity," but also on account of their direct applications to many important problems. (See Salmon's "Geometry of Three Dimensions," Arts. 467, 480, \&c.)
22°--Some interesting properties pertaining to confocal quadrics can be deduced by application of the numerous new theorems arrived at by the author, and published in Vol. X of the "Quarterly Journal of Pure and Applied Mathematics," under the title-"Properties of Quadrics having Common Intersection, and of Quadrics inscribed in the same Developable."
3°.-Since writing the present paper, the author has found that the question had been previously considered by the late Professor Townsend, of the Dublin University.

The results at which he arrived are given without any investigutions on page :312 of Williamson's "Integral (alalculus." From question 19, as there enunciated, it would appear that Townsend did not perceive that the envelope of the plane is an ellipsoid only when the prescribed moment of inertia is not less than a certain determinable magnitude ; or that it is a Hyperboloid of One Sheet for all values less than such limiting value. Nor does it appear that he considered the case in which the envelope of the plane is a Hyperboloid of Two Sheets, or any limiting values of the moment of inertia.

